Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a variant of stable logarithmic maps, which we call punctured logarith- mic maps. They allow an extension of logarithmic Gromov–Witten theory in which marked points have a negative order of tangency with boundary divisors. As a main application we develop a gluing formalism which reconstructs stable logarithmic maps and their virtual cycles without expansions of the target, with trop- ical geometry providing the underlying combinatorics. Punctured Gromov–Witten invariants also play a pivotal role in the intrinsic con- struction of mirror partners by the last two authors, conjecturally relating to symplec- tic cohomology, and in the logarithmic gauged linear sigma model in work of Qile Chen, Felix Janda and Yongbin Ruan.more » « lessFree, publicly-accessible full text available February 5, 2026
-
We first introduce and study the notion of multi-weighted blow-ups, which is later used to systematically construct an explicit yet efficient algorithm for functorial logarithmic resolution in characteristic zero, in the sense of Hironaka. Specifically, for a singular, reduced closed subscheme $$X$$ of a smooth scheme $$Y$$ over a field of characteristic zero, we resolve the singularities of $$X$$ by taking proper transforms $$X_i \subset Y_i$$ along a sequence of multi-weighted blow-ups $$Y_N \to Y_{N-1} \to \dotsb \to Y_0 = Y$$ which satisfies the following properties: (i) the $$Y_i$$ are smooth Artin stacks with simple normal crossing exceptional loci; (ii) at each step we always blow up the worst singular locus of $$X_i$$, and witness on $$X_{i+1}$$ an immediate improvement in singularities; (iii) and finally, the singular locus of $$X$$ is transformed into a simple normal crossing divisor on $$X_N$$. Comment: Final published versionmore » « less
-
null (Ed.)We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $$X \longrightarrow B$$ with singular fibre over $$b_0\in B$$ yields a family $$\mathscr {M}(X/B,\beta ) \longrightarrow B$$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $$b_0$$ in terms of rigid tropical maps to the tropicalization of $X/B$ . This generalizes one aspect of known results in the case that the fibre $$X_{b_0}$$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.more » « less
-
We survey a collection of closely related methods for generalizing fans of toric varieties, include skeletons, Kato fans, Artin fans, and polyhedral cone complexes, all of which apply in the wider context of logarithmic geometry. Under appropriate assumptions these structures are equivalent, but their different realizations have provided for surprisingly disparate uses. We highlight several current applications and suggest some future possibilities.more » « less
An official website of the United States government
